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ABSTRACT

An experimental investigation was performed in the Calspan Corpora-
tion Hypersonic Shock Tunnel (48-inch Leg) using an 0.010-scale 3SV Orbi-
ter Configuration 140A/B Model (51-0) to determine the effects of RCS jet/
flow field interactions on SSV aerodynamic stability and control charac-
teristics at various hypersonic Mach numbers and Reynolds numbers. Flow
field interaction data were obtained using pitch and roll jets at Mach
numbers of 10 and 20 at a unit Reynolds number of 0.85 x 10° per foot and
at a Mach number of 10 at a unit Reynolds number of 6.1 x 10° per foot.

In addition, direct impingement data were obtained at a Mach number of
zero with the test section pumped down to below 10 microns of mercury

pressure.
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INTRODUCTION

A 0.010-scale model of the Rockwell International Space Shuttle
Vehicle Orbiter (Configuration 140A/B) was tested in the Calspan Corpora-
tion Hypersonic Shock Tunnel (48-inch Leg). Test dates were from Oct. 28,
1974 through Nov. 22, 1974.

The objective of the test was to determine the effects of RCS jet/
flow field interaction on SSV aerodynamic stability and control character-
istics at various hypersonic Mach numbers and Reynolds numbers.

Data were obtained for pitch and roll jets at Mach numbers of 10 and
20 at a unit Reynolds number of 0.85 X 105 per foot, and at a Mach number
of 70 at a unit Reynolds number of 6.1 X 105 per foot. Direct impingement
data were obtained at a Mach number of zero with the test section pumped
down to less than 10 microns of mercury pressure.

A11 control surfaces (elevons, body flap, speed brake, and rudder)
were set at zero deflection and an angle of attack of 30 degrees was set
for the entire test. Some of the model photographs in this report show
control surface deflections that are not zero, but all testing was con-
ducted at zero control surface settings. Yaw and roll attitudes were set
at zero for the entire test.

Data were obtained with RCS chamber pressure settings of 0 psi simu-
lating RCS off, and 170, 680, and 1540 psi, which match the model RCS jet
to tunnel free stream parameters of thrust ratio, momentum ratio, and
plume shape for the three test conditions to the q = 5 psf full-scale

free flight parameters. (See Table V).
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NOMENCLATURE
PLOT
SYMBOL DEFINITION
calibration constant, 1b/mv or in-1b/mv
axial force, 1bs.
BREF wing span; lateral reference length, in
LREF wing MAC length, longitudinal reference length, in.
specific heat at constant pressure, ft-1bs/slug-°R
. . . A
CA axial force coefficient,
Qe §w
: ‘s Peav - Pw
c(cp) cavity pressure coefficient, —
¢sL rol'ing moment coefficient, :
qy, by Sy
, . .. Me
CLM pitching moment coefficient, E:TEIF?"
. N
CN normal force coefficient,
' 2. Su
CYN i t coefficient, —
om coeffici .
yawing momen efficien -::TRITi;—
. Pm = ps
cp pressure coefficient,
. A Y
cy side force coefficient, -
0w SN
(see Data Reduction Section)
c* (see Data Reduction Section
SQRTC* (see Data Reduction Section)



——

———res
PR ——
e
-

NOMENCLATURE (Continued)

vertical distance from balarice center to model
total enthalpy, ft-1bs/slug, Ho was multiplied
by 10-6 for data display

enthalpy at wall conditions, ft-1bs/slug, H, was
multinlied by 107® for data display

1ift to drag ratio, CL/CD
rolling moment about the balance center, in-1bs.

Orbiter reference body length, inches

pitching moment about the balance center, in-1bs.

incident shock Mach number

model moment reference center (Xo, Yoo Z,), in.

yawing moment about the balance center, in-lbs.

normal force, 1bs.

RCS Plenum Chamber Pressure, Fsia

pressure measured orn model at tap number
J = 1,2,3,4, psia

stagnation pressure, psia

stagnation pressure behind a normal shock, psia

PLOT
SYMBOL SYMBOL DEFINITION
h

MRC, inches

Hy H(O)
Ry H(W)
L/D
L
Yy
m
M; M(1)
M. MACH Mach number
MRC MRP
n
N
p pressure, psia
PC PCRCS
Pms: PMj
my J
Py P(0)
P‘o PITOT
PTS P(TS)

pressure in the test section before a test,
microns
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SYMBOL
P

Qe
§s/T

Re/ ft

Re

Scav.

PLOT
SYMBOL

NOMENCLATURE (Continued)

DEFINITION

P
Q(PSI)

RN/L

REFTL

SREF

T(0)

T(W)

Tt

freestream static pressure, psia

freestream dynamic pressure

inverse RCS thrust coefficient

Reynolds numver per foot, °= U=
ul')

multiplied by 1076 for data display

1
, - Re/ft was
ft /

P Unlp .
Reynolds number, — Re was multiplied by
107% for data display

model reference cavity area, in.2
model wing reference area, in?

RCS nozzle thrust, 1b.
tem,crature, °R
total temperature, °R

temperature at wall conditions, °R

(See Data Reduction Section)
(see Data Reduction Section)

freestream static temperature, °R

longitudinal distance between the balance
center and the model MRC, inches

RCS nozzle exit gas velocity, ft/sec
freestream velocity, ft. per sec.

spanwise distance between the balance center
and the model MRC, inches
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PLOT
SYMBOL SYMBOL
VX VBAR
v VLEAR
ch/kb XCP/L
\\'i
XMRC XMRP
Xo X0
Y
YMRC YMRP
Yo YO0
IMRC IMRP
g 20
o ALPHA
y
SBF BDFLAP
e ELEVON
§pe RUDDER
8 SPDBRK
Mo, MU
Peo RHO

NOMENCLATURE (Continued)

DEFINITION

(see Data Reduction section)
(see Data Reduction section)

normal force center of pressure, 0.65 - (_ﬂ)(li),
percent model length

ith component balance capsule output, i = 1,2,...6,
T;ngitudinal location of MRP, in. X, Orbiter
longitudinal station, in.

Orbiter longitudinal station, in.

side force, 1bs.

lateral Tocation of MRP, in. Y,

Orbiter lateral station, in.

vertical locatior of MRP, in. Z,
Orbiter vertical station, in.

model angle-of-attack, degrees

specific heat ratio

body flap deflection, degrees

elevon deflection (8e| + ser)/2, degrees
rudder defiection, degrees

speedbrake deflection, degrees

freestream absolute viscosity coefficient, slugs/
ft-sec. 1, was multiplied by 108 for data display

freestream density, slugs/ft3; o, was multiplied
by 10® for data display

10




PLOT
SYMBOL SYMBOL

NOMENCLATURE (Concluded)

DEFINITION

o SIGMA
6 PHI
8 BETA

SUBSCRIPTS
1
4
AF
C

cav.

cp

standard deviation
angle of roll, degrees

angle of sideslip, degrees

driven gas initial conditions

denotes region behind reflected shock

data based on tunnel airflow calibrations
corrected

cavity

center of pressure

data based on estimated values for g, (ref. 14)
incident shock in driven gas

left

model

nozzle supply stagnation conditions;
Orbiter reference system

stagnation conditions behind a normal shock
right

reference

wing reference; conditions at wall
freestream conditions

static pressure tap number, RCS nozzle exit
condition

N



REMARKS

Test Summary

Test OA93 activity at the Calspan Hypersonic Shock Tunnel commenced
on Oct. 28, 1974 and was completed Nov. 23, 1974. Installation of the
sector, "E" nozzle, model, RCS system, and Schlieren system required six
days; check-out of the balance in the tunnel took one day; check-out and
nodification of the RCS system took seven days; and testing was conducted
for 5 days. A total of 152 hours of testing activity (equivalent to occu-

pancy hours) were used to obtain 15 runs, eleven of which yielded data.

Precision of Data

Stagnation enthalpy and the test section free stream conditions were
calculated using the tnermodynamic properties of real air, the incident
shock wave velocity, and the nozzle supply pressure. The speed of the in-
cident shock wave was measured to within #1 percent. Based on the agree-
ment of pressure transducers, the nozzle supply pressure is considered
accurate to within +3.5 percent. Dynamic pressure was determined from a
linear correlation of measured model pressures and forces (see Data Reduc-
tion section); thereforc, one would expect the most probable error in
dynamic pressure to reflect the accuracy of these measurements, which is
+5 percent and +3 percent, respectively. The resultant most probable
error in dynamic pressure is calculated as +5.8 percent. The test section
Mach number, which is in turn dependent upon the ratio of P3/Po and Q./Py,

is then estimated to be accurate to +2 percent.

12
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REMARKS (Continued)

Model attitude was set with an inclinometer at the desired angles of
pitch and roll, and are estimated to be within +0.1 degree.

On the basis of calibration repeatability and on the consistency and
the repeatability of the pressure data, it is estimated that these data
have a "most probable error" of +5 percent.

Uncertainties in force coefficients arise from errors in q_, refer-
erence area, and balance loads. The error in q_ is covered in the Data
Reduction section. If one assumes a negligible error in the reference
area, then all that is needed to obtain the overall accuracy of the force
data is a knowledge of the precision of measuring the balance loads. On
the balance output, there will be an incremental error based on the capa-
bility of the balance to read a given load. This type of uncertainty
would put on the data plot a band which would be independent of angle of
attack. These incremental errors are obtained by calculating the 30 dev-
iation between applied and calculated calibration loads. (For a normal or
Gaussian distribution of errors, lo contains 68.3 percent of the data
compared to 99.7 percent of the data for 30; therefore, 30 is considered
more applicable here.) The calculated loads were determined by using the
calibration constants and the balance output data produced by the applied
loads.

For the static calibrations used in the program, the results are as

follows:
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REMARKS (Concluded)

30 Deviation Value

+ .696 pound
+1.254 inch-pounds
+2.325 pounds

+2.010 inch-pounds

I+

.243 inch-pound

I+

.198 pound

14

Percent of
Full-Scale

0.7
2.1
3.7
4.7
2.0
0.5
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CONFIGURATIONS INVESTIGATED

The model for these tests was a 0.010-scale replica of the Rockwell
International Space Shuttle Vehicle Configuration 140A/B, designated
Model 51-0. SSV Orbiter Configuration 140A/B is composed of the configu-
ration control drawing VL70-000140A body and the VL70-000140B wing. A
three-view drawing of the orbiter configuration is shown in figure 2a.

The metric orbiter components are constructed of AZ31B magnesium
and consist of the following items: fuselage, wing, vertical tail, orbi-
tal maneuvering system (OMS) pods, simulated lower orbiter main engines,
speed brake, and body flap. Al1 control surfaces (elevons, body flap,
rudder, and speed brake) remained in their undeflecied positions for the
entire test.

The aft end of the OMS pods have been modified to allow installation
of simulated RCS nozzles. A plenum for supplying air to these nozzles is
mounted at the rear of the orbiter fuselage, between the RCS nozzles.

Two RCS nozzle blocks were used, each with 2 nozzles. RCS plenum and
nozzle blocks are non-metric, and are clamped on the sting, aft of the
model, with a gap of 0.30-inch between the metric OMS pods and non-metric
RCS nozzle blocks. Figure 2b shows nozzle block geometry.

Nomenclature below were used to designate the orbiter model compo-
nents. 0y = Bpg Cq Epg F7 M5 N7g R5 Vg Wiy

(Non-metric RCS nozzle blocks are plenum-mounted at base of
orbiter.)

0, = 0y with non-metric RCS nozzle blocks, plenum, and supply
pipe removed from base of orbiter.

15
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CONFIGURATIONS INVESTIGATED (Concluded)

The orbiter components are defined as follows:

Symbol  Component

Confiqguration

Lines Drawing

826 Body
C9 Canopy
E26 Elevon

F7 dody Flap

M]5 OMS Pod
N76 Lowey Main

Engines
R5 Rudder

V8 Vertical

w]]6 Wing

140A/B

3A

1408

3A

3A
3A

140A/8B
3A
1408

VL70-000140A
VL70-000193
Same as B26

VL70-0001408
VL70-000200

VL70-000T40A
VL70-000145

VL70-000145

VL70--000T40A
VL70-105106A

VL70-000095
VL70-000140A

VL70-0001408B
VL70-000209

RCS nozzle blocks are defined as follows:

Model Drawing
VF109558 (AEDC)
VF109560 (AEDC)
R80054 (Lockheed)
VF109558 (AEDC)
VF109559 (AEDC)
VF109559 (AEDC)
SSA01247 (AEDC)
VF109561 (AEDC)

SAA01247

VF109559 (AEDC)
VF109559 (AEDC)

VF104559 (AEDC)
VF109560 (AEDC)

Symbo] Definition

Ngs3 Twin left side pitch down RCS nozzles sized to simulate the
prototype 3A configuration (VL70-000140A) aft RCS pitch
engines at qo, = 5 psf and M, = 29.0 with a wind tunnel Mach
number of 10.3. Nozzles are canted 12° aft and 20° outboard.

Naa Twin right side pitch up RCS nozzles, sized the same as N43.

Nozzles are not canted.

Model component dimensional data are given in table III. Reference 12
and 15 give additional model information.

16
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INSTRUMENTATION

Force data were measured with the Calspan 1.312-inch diameter six
component “E" balance. This balance is a piezoelectric balance using six
lead zirconium titante ceramic load cells mounted to a non-metric platform,
which is integral with the sting support. A sketch of the balance is shown
in figure 2e. Accelerometers were installed in the model to form an accel-
eration balance which, when combined with the force balance, resulted in
an internally compensated balance system. The accelerometer balance con-
sists of six individual accelerometers (equal in number to the number of
force and moment components) mounted individually within the model. Their
locations and axes were selected for maximum imposed acceleration; i.e.,
at model extremities for pitch, roll, and yaw. An analog compute- was
used to combine signals from the balances, six force heams (3 normal, 2
side, and 1 axial) and the six accelerometers to yield internally compen-
sated electrical outputs, directly proportional to the applied forces and
moments.

A grounding (fouling) circuit was provided between the sting and the
metric orbiter main propulsion engine nozzles.

The model cavity and pitot pressures were measured by a system de-
veloped to meet the particular requirements of shock tunnel testing. The
pressure transducers employ piezoelectric crystals, and their small size
permits installation within the model. The transducers used in this test
have a dual-element feature which reduces acceleration effects to an in-

dicated pressure of .0003 psi/g. Pressures as low as .0008 psi may be

17



INSTRUMENTATION (Continued)

accurately measured by these transducers. Proper shielding of the elements
precludes temperature effects in the short test time.

Four locations on the bottom surface of the orbhiter body and wing
were instrumented with Calspan piezoelectric pressure transducers. These
transducers are acceleration compensated and were located on the model as

specified below.

PRESSURE ~ PRESSURE COEFFICIENT LOCATION
X-DUCER NO. NUMBER OKBITER COORDINATES, INCHES MODEL
SCALE
Pt cP1 LOWER WING SURFACE X, = 11.887
Yo = 2.810
P2 cP2 LOWER WING GLOVE X, = 10.782
Yo = 1.82)
Pn3 cP3 LOWER FUSELAGE Xo = 11.887
CENTERLINE (AFT) Yo = 0.000
Pid cP4 LOWER FUSELAGE Xo = 4.000
CENTERLINE (FORWARD) Y, = 0.000

Figure 2c shows the pressure locations on the model.

Orbiter base pressure was not measured on this test. However, the
balance cavity pressure was measured using a Calspan piezoelectric pres-
sure transducer.

The RCS plenum chamber was instrumented to monitor plenum wall pres-
sure. This pressure was measured using PCB Model 113M01 transducer sup-

plied by Calspan.

18
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m[ INSTRUMENTATION (Concluded)

The Schlieren system used was of the double-pass collinated type
with the knife edge horizontal. This system was used to provide the sen-
sitiviiy needed to obtain photographs of shock waves during low density
runs. Schlieren photographs were taken during most runs.

The outputs from the pressure transducers and the force-balance sys-
tem were recorded on the magnetic drum of a Navigational Computer Corpor-
ation MCL-100 data acquisition system (NAVCOR), which samples the data
from each of 48 channels every 50 microseconds. The data from the drum
are transferred to a Brush recorder for immediate examination and prelimi-
nary calculations. The average voltages obtained from the Brush recorder
were subsequently punched on cards for reduction on an IBM 370-168 com-

puter.

-



TEST FACILITY DESCRIPTION

The basic components of the 48-inch Hypersonic Shock Tunnel (HST)
are shown in figure 2d and described in reference 1. The tunnel employs
= constant-area shock tube with an 8-inch inner ciameter. The driver tube
is 20 feet loug and is externally heated by a resistance heater to temper-
atures of 1460°R. The driven tube is 50 feet long. The driver gas is
generally a mixture of helium and nitrogen with a maximum helium purity
of 100% while the driven gas is generally air. Steady-flow test times of
duration sufficient to permit accurate measurement of the various para-
meters of interest are achieved with the tailored-interface technique. A
basic discussion of shock tunnel operation technique can be found in ref-
erence 1.

Three axisymmetric nozzles are available to expand the test gas to

high velocities:

Exit Diameter Test Section

Nozzle Type ~in_Inches Mach Number
A Contoured 24 5.5to08
D Contoured 48 10 to 16
E 10%° Semi- 48 9 to 20

angle cone
The "E" nozzle was used for this program to obtain the highest Mach
number possible. The nozzles employ replaceable throat inserts of dif-
ferent diameters so that with the particular nozzle, the test Mach number
can be varied. Test air passes downstream of the test section into a

receiver tank of a size sufficient to maintain the desired flow for dura-

20



TEST FACILITY DESCRIPTION (Concluded)

tions of 5 to 13 milliseconds. A1l nozzles have been calibrated using

pitot-pressure survey rakes over the Mach number range indicated.
The test section is equipped with two 16-inch diameter Schlieren

windows mounted a short distance aft of the nozzle exit.

"
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TEST PROCEDURE

The force balance system was first statically calibrated by hanging
a series of weights on the balance and recording the force capsule vol-
tage outputs. The model was then mounted on the balance, and an inertial
compensation procedure, in which the model underwent known translational
and rotational accelerations about three chosen axes, was conducted. Re-
sultant signals were used as inputs to an analog computer. By combining
the force balance and accelerometer signals, the computer supplied as
outputs to the recording system the values for the aerodynamic forces and
moments. Once the balance was cl.pensated, a dynamic check calibration
was made of the complete model balance system to verify the accuracy of
the compensation. This procedure consisted of rapidly releasing known
loads from the model and recording six-component acceleration-compensated
balance data.

Pressure transducers were calibrated (i.e., voltage output vs.
applied pressure) after installation in the model. The voltage variation
of the transducer is linear over the range of pressure normally encoun-
tered during testing. This calibration, in conjunction with estimated
values for the model pressures to be experienced during the actual test,
provided the basis for adjusting the gain of the data recording system to
achieve maximum "readability". The detailed calibration data are kept on
file at Calspan.

The RCS nozzle blocks used tor this test were calibrated in tne

Rockwell International Rocketdyne Division Rocket Nozzle Test Facility

22
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TEST PROCEDURE (Continued)

prior to the test. Procedures used for these calibrations are descri*-4
in reference 13. Calibration curves of vacuum thrust versus charber
pressure are given in figure 4a.

The model was installed on the Calspan 1.312-inch diameter six.com-
nonent "E" balance assemhbly supported by the Calspan 1-inch diameter
H61-1042-5 sting. The sting was attached to the light 'oad sector using
vibration isolating pads.

A quick-acting solenoid-actuated Valcor valve was mounted on a
bracket in proximity to the base of the model to sup.ly high pressure air
to the RCS system. The supply line for this valve was attached to a 10-
inch diameter plenum tank mounted in the tunnel receiver tank, aft of the
model. Prior to each RCS run, the tank was loaded to the RCS operating
pressure from the Calspan high pressure uir system. Plenum pressure was
set with either a U.S. Gage 300 or 3000 psig gage, depending on the pres-
sure level. During each RCS run, firing of the Valcor valve was synchro-
nized with operation of the tunnel so that the peak RCS pressure coin-
cided with the usable test time.

[t was necessary to solve unexpected installation, inStrumeniation,
and operational problems before usable data cound be obtained. Problems
which were peculiar to plume simulation in a short duration run type of
hypersonic facility are enumerated below:

1. The Valcor valve (for RCS oneration) was moved from the sting

to a bracket mounted on the floor, next to the sting. This isoiated the
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TEST PROCEDURE (Concluded)

valve and plumbing from the sting-balance system, the only connection be-
tween the two being a fler line, and reduced the mechanical shock and
electromagnetic interference effects of the balance caused by the valve.

2. Electronic iters were installed in the Navcor computer to
eliminate the large noise signals caused by firing the Valcor valve.

3. Synchronization of RCS system peak pressure with tunnel run
time was accomplished by fine-tuning the inputs into the delay generator
in the Valcor valve firing system. Several check runs were made to

determine the proper timing delay.
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DATA REDUCTION

With the exception of q_ and P-,s standard Calspan data reduction
methods were used to compute force and moment coefficient data, center of
pressure locations, and the remaining test section conditions. Reference
3 describes the Calspan standard data reduction methods used for the Hyper-
sonic Shock Tunnel

From the model-balance system static calibration data, a matrix was
computed that relates the applied loads and moments to the balance outputs,
accounting for all interactions and the location of the specified moment
reference center. Aerodynamic forces and moments were then computed from

the matrix, which for the six component balance has the form:

4 &\ /X{\
m X2
Y X3

$pT g f
2 Xg

KA) \xsz

where X = balance capsule output in millivolts

a = calibration constant (1b/mv or in-1b/mv)

N = normal force, 1bs.

m = pitching moment about the balance center, in-1bs.
A = axial force, 1bs.

Y = side force, 1bs.

2 = rolling moment about the balance center, in-lbs.

n = yawing moment about the balance renter, in-1bs.
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DATA REDUCTION (Continued)

In addition, the pitching, yawing and rolling moment coefficients
about the model moment refererce center and axial force corrected for

model cavity pressure were computed from the following eauations:

Mme =m+uY+hA (1) where:

ne =n+aVY+vAg (2) u = -0.519 inch

R =2 *+hY-vVN (3) h = +0.250 inch

Ac = A+ Scay. (Pav-Py) (4) v = 0.0 inch
Scay. = 4.5 in?

The pressure transducer; measure the difference between the initial
test section pressure and the applied iucal pressure. The initial pres-
sure is of the order of 5 microns and is added to the measured pressure
to obtain the absolute model pressure. The local pressure coefficient
Cp was then computed.

The test conditions of pressure, temperature and Reynolds number are
computed by assuming isentropic expansion of the test gas from the con-
ditions behind the reflected shock in the driven tube to the test section
Mach number. The flow is expandea sufficiently so that the air in the
test section is cool enough to ohey the perfect gas laws.

The stagnation enthalpy and temperature of the air behind the
reflected shock is determined from
o =M (H4/H]) (5)

and To

H

T (T4/T]), respectively (6)

where H,/H, and T,/T, are functions of U:;, the incident shock velocity.
4™ 4/ i
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DATA REDUCTION (Continued)

(References 4-6). U; is obtained by measuring the time taken by the
shock wave to pass between two stations in the shock tube. H] is taken

from reference 7. Free stream static temperature is obtained from

H
o= 2 (0 + 251 n 2] (7)

p

Free stream pressure is calculated using

Pe

e
Pp Po [1+ Lzl M,,,Z](v-l

vhere:
P
Pp - [T“(gjpg)):il] &
is the real gas correction to the ideal static-to-total pressure ratio as
described in reference 8. The source data used in this technique are
references 7 and 9.

Values for absolute viscosity (u) used to compute Reynolds numbers
were cbtained from reference 10 for temperatures below 500°R.

Stagnation conditions behind a normal shock in the test section are
based on the data of reference 9. The balance of the primary test sec-
tion properties is based on perfect gas theory.

The normal procedure used to determine free-stream Mach number is by
a correlation of Mach number with reservoir pressure and temperature

determined from previous airflow calitrations (reference 1). These air-

flow calibratiors consist of measured lateral surveys for a range of
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DATA REDUCTION (Continued)

tunnel operating conditions. Free-stream Mach number used in the corre-
lation is determined from the average ratio P(’J/P0 for each airflow cali-

bration run (reference 3.) Dynamic pressure is then calculated from:

= X M2
Q= I P

During test O0A113 (same model, but without RCS Jet Simulation; see
reference 14), coefficient data scatter as high as +20 percent was noticed
at some test conditions. Since Xcp/L, and L/D did not show this scatter,
it was concluded that the coefficient scatter was caused by insufficient
knowledge of dynamic pressure. Although a pitot probe was mounted in the
test section, the high model angle of attack required that the probe be
mounted too far from the model to provide reliable values of dynamic
pressure. It was subsequently discovered that the forward model pressure
(Pmg) correlated very well with normal force. Correlations of Pmg, normal
force, and estimated dynamic pressure were then made using an iterative
procedure. This same procedure was used for OA93, and the results are
shown in figures 4b, 4c, and 4d.

This procedure is based upon the assumption that viscous interaction
effect on normal force is on the order of 1% and can be ignored. There-
fore, normal force is assumed to be linear with dynamic pressure. In
addition, Pmg is located on the model such that it is free from flow
separation and control surface deflection effects. It can also be shown
that test data for Pmy is linear with the estimated value for dynamic

pressure used for data reduction. (See figure 4d.)
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DATA REDUCTION (Continued)

Test Conditions were then obtained as follows:

1.

Dynamic pressure for a given run was calculated from the ratio

of Pmy/q, using the measured Pmg for that run.

2.

Pitot pressure was calculated from the theoretically established

ratio of P /q, used in reference 3.

3.

Free-stream Mach number and the other test conditions were then

calculated from the ratio P; /iy, using the measured values of reservoir

conditions for that run and equation< 5 through 8, as discussed above.

For a detailed discussion of the theoretical principles and experimental

substantiation for deriving the estimaied dynamic pressures. see reference

14.

Other equations and methods special to this test are outlined below.

1.

Calculation of viscous parameter V* (Rockwell Method)

= 0.5 UL+ (1+ 0.2 M)[0.31462(sina) + 0.18538]
. 7x (/2 [ Ta + 198.6

R T T ¥ 798.6

oL Mo VEE

JRe,
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DATA REDUCTION (Concluded)

2. Calculation of viscous parameter V; (Langley Method)

¥ = (0.458 + 0.532 —%iﬂln +0.039 M)
, i [som, + 1221 x 10709
- () g T
- 5/9T + 122.1 x 10-(9/T7)
5 M. VCo
@™ \/ﬁél

The following reference dimensions and constants were used to com-
pute force and moment coefficient data and center of pressure locations.

These values are shown in figure 2g.

Symbol Full Scale Model Scale
b,, 936.7 in. 9.367 in.
c 474.8 in. 4.748 in.
2p 1290.3 in. 12.903 in.
Sy 2690.0 ft.2 0.269 ft.2
XMRC 1076.7 in. 10.767 in.
Scav 4.50 in.?
u -0.519 in.
v 0.0 in.
YMRC 0.0 in. 0.0 in.

h 0.25 in.
IMRC 375.0 in. 3.75 in.
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DISCUSSION TF RESULTS

Interaction effects induced by the RCS plume were obtained by taking
the difference in force and moment coefficients between RCS on and RCS
off (Pc = 0) runs. This was necessary because the relatively short run
time did not allow time to obtain steady balance readings with the jet
off and then turn the jet on, wait for the flow to reestablish and obtain
another steady level. The Run Summary presented in table VII identifies
the runs at each of the three test conditions, which may be paired to
obtain RCS interaction effects. This table is annotated to assist the
data user in interpreting the data.

Fifteen runs were made during the test; eleven yielded data. RCS
timing problems were experienced in the Mach 19.4 runs 2 and 4; because
these runs were repeated (runs 3 and 5), runs 2 and 4 should be treated
circumspectly, if used at all. Run 7 is a repeat of the Mach 19.4, RCS
on run 5 for the purpose of determining data repeatability.

On runs 6 and 13 amplifier gains on some components, as noted, were
set too low. The resulting low amplitude signals impaired the resolution
and thus the accuracy of the associated coefficients by a factor of 2, or
more, greater than stated in the discussion on precision of data.

Test results are plotted in figures 6 through 9 with results from
0A82 (Langley 31-inch CFHT). Interaction effects are plotted as a func-
tion of the inverse thrust coefficient, qS/T, for an angle of attack of
30 degrees.

Figures 6 and 7 compare OA93 test results for the right hand up-

31



[ ——
[P——
[

.

DISCUSSION OF RESULTS (Continued)

firing jets at M = 10 and 20 and Re, =~ 0.09 x 106 with OA82 test results
for M = 10 and Re; = 1 x 10°. These data indicate that there are negli-
gible Mach number and Reynolds number effects on RCS/aerodynamic inter-
action in the hypersonic entry regime. The normal force interaction data
are scattered, but this has been typical of all RCS effects tests to date.

Left hand down-firing jet test results are presented in figures 8
and 9. These figures compare 0A93 test results at M = 10 and 20 for

Re, = 0.09 x 108 and Re, = 0.7 x 106 with 0A82 results at M = 10 and

Y

Re, = 1 x 106. There is more data scatter in these results than for the
upfiring jet data and it is impossible to conclude whether a Mach number
or Reynolds number effect exists. Again, the normal force data have the
most scatter.

Even though the test data were not corrected for source flow, no
effect is expected on the interaction results because they are obtained
as a difference between RCS on and RCS off runs, thereby cancelling the

source flow effect.

RCS-0ff Aerodynamic Data

Although obtaining absolute aerodynamic coefficients was not the
intent of this program, it is instructive to review the RCS-off coeffi-
cient data obtained in the conical nozzle. RCS-off pitch plane data are
plotted as a function of the viscous interaction parameter, V;, in figure
10. This plot compares the two Calspan tests in the 48-inch HST (0A93-

conical nozzle and 0Al13-contoured nozzle) and the 0A82 test data “rom
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DISCUSSION OF RESULTS (Concluded)

the Langley 31-inch CFHT. Test OA93 data are plotted with and without a
conical flow correction. The correction was determined analytically using
Newtonian impact pressure increments integrated over a flat plate model
of the orbiter planform. The axial force correction is zero for this
method. Agreement between axial force data from the OA82 Langley and
0DA113 and 0A93 Calspan tests is very good.

While the corrected normal force and pitching .ioment data move
closer to the parallel flow (contoured nozzle) data of tests 0A82 and
0A113, a discrepancy still exists. The corrected normal force data are
4 to 8% below the faired values and the corrected pitching moment is
0.002 to 0.016 above the faired values. No further attempts were made to

obtain a more accurate correction.
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TABLE I

.

| TEST © 0A93, CAL I84-120

TEST CONDITIONS

DATE ¢ 11-72-Tk

NF
sF

FM

R

Y

LOWET #

CAPACITY,

[# ? Yhe

62,4 1bs,
41,0 1bs,
__60.9 in,-1bs,
12,0 in,~lbs,
43.1 in.-1bs,

ACCURACY

+3% of measured_load _

:'ﬁ "
B * "
+ $ [1]

N "
ﬁ‘ "

Cee Data Reduction Section

REYNOLDS NUMBE R DYNAMIC PRESSURE  [STAGNATION TEMPERATURE
MACH NUMBER (per foot) {pounds’sq. inch) (deprees Faineshert)
- 10.75 0.607 X 1o6 1.958 3518
| 9,60 0,084 x 106 0,685 5363
19,77 0.086 x 10° 0.158 L9al
——
BALANCE UTILIZEL. _ Calspan "E" Low-load Balance
COSFFICIENT

TOLERANCE

ORIGL

e

AL AR “futm" i

< ey
v .’t'v."" ¢

36



AN

? wve”

[(ARIN-2 RaleH

(TY=d~ VW T

ROV T

"HT ARG T (IS

53T D33

SITNJIHIS

WN3IZD 24320

§F§ 9C ©

Y.VC sC 3¢,

d

T 1 Ll

1288 w)q\« 1 V{AS

STTYHATW 7 WSVIT T (JI7T5 7

(MY

(=

thv&TL.ﬂH»Q ‘¥ - ILATISNT 1—.— 3797

s L oA AT

BTTT T

Laip A"

i.lw_l—H'q

A

VI T TRd AT TONKT

AT VY TRNT

1 i ]
_ | | |
, , : ! [ |
T|.Lri|ntn4 ]’i‘ll_ - .Ybi.'%.oll‘ . Dfl»%r ; —— -, e —— -
R R R e e } e
S SRS S (N HE 4 — 5
+ b | p 4 S—
—
r — — .- -
g .
i . - —
i N
2| . SIANEIRIREE RNt K4
) e R Sl =1 q x —1
x 1 \
: Eicll BNl TN ﬂhoon.ﬂ«ui
g - T = 7 —FrerTy T -
- _ r|llrl'.ri¢ — I+ -+ 5 § .r
= —— - —— - - — e { ’%v - —
s e e AER
.r i ST I e w Th Ik
N ISR IBERS . -
i — —_—— . IS A
! I | 2V 7 Sl EEL IS c]c T L
TR OTR [ TR o R 3 5 SRPNCE
h 37 S ILYNGGSL Y O ) SHIBWT N M Mu(v,. WUDJq N/SUI LAy vald BoawE et 13¢ w . ¥
= AV ARIS NOILY T1T702 ¥39WNN NAY 135 vivd ~v. - 1S31
“IT 378vl

o Y

37

72)

s

woAD PAGR']
Ut Poor QUALITY)



TABLE III MODEL DIMENSIONAL DATA

MODEL COMPONENT '___BODY - B,

GENERAL DESCRIPTION : _ Configuration 140A/B orbiter fuselage

NOTE: B, is identical to B,, except underside of fuselage has been
[SAv N o

refaired to accept W, 4.

MODEL SCALE: 0.010 MODEL DWG: S5S-A00147, Release 12

DRAWING NUMBER . V1L70-000143B, -000200, -000205, -006089, -000145
VL70-000140A, ~0001408B

DIMENSIONS FULL SCALE MODEL SCALE
Length (OML: Fwd Sta, X_=235),In, 1293.3 12.933
Length (IML: Fwd Sta. Xo =238),In. 1290.3 12. 903
Max Width (At Xo = 1528.3), In. 264, 0 2. 640
Max Depth (At X, = 1464), In, 250.0 2,500
Fineness Ratio 0.264 0. 264
Area - Ft?

Max. Cross—Sectional 340.88 0. 034
Planform
Wetted
Base
38
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TABLE III (Cont'd)

MODEL COMPONENT : CANOPY - Cg
GENERAL DESCRIPTION : Configuration 3A, Canopy used with fuselage
By
MODEL SCALE: 0,010 MODEL DWG: SS-A00147, Release 12
DRAWING NUMBER . V1.70-000143A
DIMENSIONS FULL SCALE MODEL SCALE
Length (Xo =434, 634-578) 143,357 1.434
Max Width (At Xo =513,127) 152,412 1,524
Max Depth (At Xo = 485, 0) 25. 000 0. 250

Fineness Ratio

Area

Mox. Cross—Sectional

Planform

Wetted

Base

N [\G\?‘ ‘S
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* Rev, 7/19/74
TABLE 1II (Cont'd)

MODEL COMPONENT: ELEVON - E,¢

GENERAL DESCRIPTION: Configuration 140A/B orbiter elevons.

Data are for one side.

MODEL SCALE: 0 010 MODEL DWG: S8- A00148, Release 6
DRAWING NUMBER: VL70-000200, -006089, -006092
DIMENSIONS : FULL-SCALE MODEL SCALF
*Area - Ft 205, 25 0.0205
% Span (equivalent), In. _346.68 _3.467
* Inb'd equivalent chord , In. 115.3 1. 153
* Qutb'd equivalent chord, In. _ 55,1886 -0.552

Ratio movable surface chord/
total surface chord

* At Inb'd equiv. chord 0 214 0.214
* At Outb'd equiv. chord 0. 400 0. 400

Sweep Back Angles, degrees

Leading Edge 0. 00 0.00
Tailing Edge -10, 056 -10,056
Hingeline 0. 00 0,00
(Product of area & c)
* Area Moment ('ﬁm#xwmxhnec)b“t 1518, 271 0. Q015
“*Mean Aerodynamic Chord, In. 88. 777 0. 888
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TABLE III (Cont'd)

MODEL COMPONENT : BODY FLAP - Fo

GENERAL DESCRIPTION : __ Configuration 140A/B orbiter body flap

MODEL SCALE: 0.010 MODEL DWG: SS-A00147, Release 12

DRAWING NUMBER . VL.70-000140A, -000145

DIMENSIONS FULL SCALE MODEL SCALE
Lengfh(xo =1520 to XO =1613), In. 93,000 0.930
Max Width, In. 262,00 2. 620
Max Depth (XO = 1520), In. 23,00 0.230

Fineness Ratio

Area - th

Mov. Cross—Sectional

Planform 142, 6 0.014
Wetted
Base 41,847 0,0042

Model dim. measured from model sta. 15, 20

a4



TABLE III (Cont'd)

MODEL COMPONENT .__OMD POD - Mg

GENERAL DESCRIPTION : Configuration 3A - Modified RCS simulation

with nonmetric RCS engine housing and nozzles, Same geomelry ag

M 2 forward of Station XO = 1502,

MODEL SCALE: 0.010

DRAWING NUMBER . _VL70-000140A, -000145

DIMENSIONS : FULL SCALE MODEL SCALE
Length (OMS Fwd Sta X_ =1233.), ln. 269.0 2.690
Mox Width (At X = 1450, 0), In. _94.5 0.945
Max Depth( At X = 1493.0), In, 110, 0 1.100

Fineness Ratio

Area

Max. Cross~Sectional

Planform

Wetted

Base

42
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TABLE III (Cont'd)

MODEL COMPONENT: NOZZLES - N43

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down

control to simulate reentry.

MODEL SCALE: 0,010
DRAWING NO,: SS-A01160-15
DIMENSIONS:
Flight dynamic pressure simulation - PSF
Cant angle - Deg.
Aft
Outboard
Diameter - In.
Exit
Throat
Area - In
Exit
Throat

Area ratio

No. of nozzles

43

MODEL SCALE

12

20

0.129

0.0465

0.013
0.002

7.697



TABLE III (Cont'd)
MODEL COMPONENT: NOZZLE -~ Ny4

GENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up

control to simulate reentry,

MODEL SCALE: 0.010
DRA WING NO,: SS-A01160-9

DIMENSIONS: MODEL SCALE

Flight dynamic pressure simulation - PSF 5
Cant angle - deg.
Aft 0
Outboard 0

Diameter, In.

Exit 0.129

Throat 0. 0465
Area - In, 2

Exit 0.013

Throeat 0.002
Area ralio 7.697
No. of nozzles 2
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TABLE III (Cont'd)

MODEL COMPONENT: MP5 NOZZLLS - N

e A

GEN:“Ri:L DESCRIPTION:

Configuration 3A and 4 MPS nozzles

__Two lower nozzles only, Same as N39. except MPS engine heatshields

added.
MODEL 3CALE: 0.010
DR VIN; NUMBCR:  VL.70-005106A

CIM:N.IONZ:
“W.CH NO.

Length - In.
Ginibal Point to kxit Plane
Throat Lo Exit Plane

Diameter - In.
msxit
Throat
Inlet

o]

irea - ft°
Exit

Throat

Gimbal Psint (otation)  In.
Upper Nozzle
A
Y
Z

Lower Nnzzles
{

Y
Z

Null Position - Deg.
Upper Nozzle
Piteh

Yaw

Lover Norscle
Pitch
Yaw

-

| ORIGINAL PAGE IS
OF POOR QUAIITY

FULL SCLE  MODEL SCALE
157. 00 1,570
99.2 0.992
94. 00 0. 940
43,0 0.430
48.193 0. 0048

1468. 2 14, 682
530 £0.530 _
342.7 3,427 _
10 10

—3°30 37307
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TABLE III (Cont'd)

MOCEL COMPONENT: RUDDER - R

GENERAL DESCRIPTION: Configuration 140C orbiter rudder (identical to

—caonfiguration 140A/B rudder).

MODEL SCALE: 0,010

DRAWING NUMBER: VL70-000146B, -000095

DIMENSIONS : FULL-SCALE
Area - Ft° 100. 15
Span (equivalent), In. 201.00
Inb'd equivalent chord , In. 91,585
Outb'd equivalent chord , In. 50.833

Ratio movable surface chord/
total surface chord

At Inb'd equiv. chord 0.400

At Outb'd equiv. chord 0.400
Sweep Back Angles, degrees

Leading Edge

Tailing Edge 26,25

HingeT{8, oduct of area & <) —34.83
Area Moment (Normad:tsxhinge<iina) Ft> 610,92

Mean Aerodynamic Chord, In. 73.2

46

MODEL SCALE

0,00100

2,010

0,916
0.508

0.400

26, 25 )

34,83

0.732
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TABLE III (Cont'd)

MODEL, COMPONENT: VERTICAL - V8

~m~ ae

GENERAL DESCRIPTION:

Configuration 140C orbiter vertical tail (identical

to configuration 140A/B vertical taijl)

MODEL 5CALE:  0.010

DRAVWING NUMBIER:

VL70-000140C, -000146B

DIMENSIONS:
TOT:L DATk

o
irea (Theo) - Ft~
Planformn
Span (Theo) - In.
fspect Ratio
Rate of Taper
Teper Ratio
Sweep-Back Angle:s, Deprees.
Leading kdge
Traillng :Adge
0.25 Flemen Line

Chords:
Root (Theo) P
Tig (Theo) “P
M:.C
Fus. 3ta. of .25 MiC
W.P, ¢© .25 MAC
B.L. of .25 MAC

+irfoll Secthinn
Leading Wed,_e :ngle - Deg.

Trailing Wedge /ngle - Deg.

Leadin; kdyge Radius
Void /reu

Blanketed frea

47

FULL SCALE  MODEL SCiLE
413,253 3
315, 72 3,157

1.675 1. 675
0.507 0.507
0.404 0,404

45,00  _ 45,000

26, 25 26, 25
41,13 41,13
268,50 2. 685

—108.47  __1.085

—199.81  __1.998__

1463,.35 _14.634

635,52  __6,355

0, 00 0, 00

10. 00 10.00
14,92 14.92
13,17 0.0013
0.0 0.0




TABLE II1 (Concluded)

MODEL TOMPONENT:  WING=W, .,

-y

Arae

[RA

A DESCRIPTION:  Configuration 4

NOTE: Identical to W__ _except airfoil thickness. Dihedral angle is along

11X

trailing edge of wing. Qeometinc twist = 0.

MODEL SCALE: 0,010

TTST ND,
DIMENSIONS:

TOTAL DATA 2
nrea ..1e0,) Ft
%lan€orm
Span (Theo In,
Asnect Ratio
Rate of Taner
Taner Ratio
Dihedral Angle, degrees
Incidence Angle, degrees
Aerodynamic Twist, degrees
Sweep Sack Angles, degrees
Leading Edge
Trailing Edge
0.25 Element Line
Chords:
Root (Theo) B.P,0.0.
Tio, (Theo) B.P,
MAC
Fus. Sta. of .25 MAC
W.P. of .25 MAC
B.L. of .25 MAC

EXPOSED DATA
rea eo) Ft 0
Span, (Theo)  In, BP108 RIGUVAL
Aspect Ratio Op Pogp PAGELS'
Taper Ratio QU,
Chords
Root BP108
Tip 1,00 b

MAC

Fus, Sta, of .25 MAC

W.P. of .25 MAC

B.L. of .25 MAC

A{rfoil Section (Rockwell Mod NASA)

XXXX«<64

Root b =

z

Tiob =
K

Jata for (1) of (2) Sides
Lead‘ng Sdge Cuff 2
lan€o-m Area Tt
Leading Edge Intersects Fus M, L. @ Sta
Laadir= Edge [ntersects Wing @ Sta

48

OWG. NO. VL70-000140A, -000200
FULL~SCALE MODEL SCALE
2690, 00 0. 2690

2,265 2, 265
—m ———
0. 200 0.
3,500 3,540
0,500 0,500
45,000 45, 000
10,0006 =10.036__
—32,209 22,409
689,24 6,892
137,85 1,379
474 81 4. 718
113683 11 368
R ?T%éy?"'
1751.50 0.175
720, 68 7,207
2. 059 2. 059
0. 245 0,245
562,09 b 2l
137.85 L3379
392,83 3,928
1182.98 1!'838
251,77 2818
0.113 0.113
0,12 0,120
———— ALl
'f%%g'%' 2t —

-, A ———
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Table VI Summary of Test Conditions

5900' aBF'o.
]

RCS RUN a Q cN |
ON/OFF | No. [(r=G) MACH VBAR | (PSIA) s/nd L
—
| OFF 2 30 19.51 1 0.05111] 0.09744] 0.1700 | 0. 7030 4.61156

OFF 3 30 19.51 | 0.05243| 0.09089} 0.1579 | 0.7723 4. 7237

OFF 6 30 9.64 |10.02495]| 0.4815 | 0.6663 | 0.7493 [19.4142

OFF 15 29.97 9.62 | 0.02475| 0,4664 | 0.6726 | 0.7501 |19 5430

OFF 12 30 10.46 | 0.010%4]| 1.507 2.159 0. 7427 |62.1127

ON 4 10 19.58 |0,05136| 0.1731 | 0.1080 | 0. 7490 4.8742

ON 5 30 19.32 [0.05111] 0.1147 | 0.1664 | 0. 6576 4. 2387

ON 7 30 19.16 |0.04855{ 0.1232 | 0.18% |0.7039 £. 0606

ON 8 29.98 9.59 10.02438} 0.5022 0.6963 0. 7240 19. 5277

ON 14 29.98 9.56 [0.02435] 0.5132 | 0.6937 |o. 7529 20. 2313

ON 13 29.98 | 10.53 |0.010%] 1.674 2.200 |0. 7699 65 6102

.?E\C’@ A
Ay Q
\,‘“; \)\\\K‘
ur
51
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TABLE VII

RUN SUMMARY
o = 300
Nominal
Rur Re/f; P
s c
No. Me ] x1o (Psia) Remarks
: 19.4 0.09 0 Data traces not stieady; suspect Val=-
cor valve inadvertently actuated
2 19.4 0.09 0
4, 10,4 0.09 175 RCS plenum pressure did not stabilize
during run
5 19.4 0.09 175
) 9.5 0.08k4 0 Low amplitude data traces on Y, n, 1,
A; amplifier gains too low
7 19,4 0.09 175
8 9.+ 0.084 410
12 10.5 0.65 0
13 10.5 0.05 1530 Low amplitude data trace on yawing
monent; amplifier gain too low
1k 9.6 0.084 690
15 9.6 0.084 0 RCS hardware removed to determine
flow interference effects
Runs 1, 10, 11: No data; data 2cguisition system trigger problems.
Pun 9 Mylar diaphra;m apparently struck model.
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|
{
|
) | CANTED PITCH NOZZLE
| Ny3
“Spapt
|
CANTED SURFACE
O EXIT _
\/<;‘ 7 DIa. |
// oy
. LIP (NCLE .
2, Ne A 222
N 4 FITCH ROZZLE,
N - O CALT
~ i o \
N 7 AL A Nyg
N o
NN s
N
N g
<-<>*-.— THROAT DIAMETER
ne RCS Nozzle Configurations
” Figure 2. Model Sketches (Cont'd)
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Calspan Corporation i ftu, New vork

»

1, Rirnt side view of Calspan "K' for-e

areeleration hracket,
Fiere 7, Model Photopraphr

6i

“alanee assemtly with



‘l‘ll!lll;lsllll‘lllﬂllts
CaispanCorporation  Buit.in New ¥ vk

b, Top view of Calspan "E" force talance assembly an! ar-~elewatine
bracket,
Figure 2, Model Photorraphs - (Cont'1)
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c. Iett side view of Calspan "E" force balance assemtly and anr-
celeration bracket,
Flgure %, Model Photosraphs - (Pont'd)

-~

n3 CSBNAL EAGE L
U T Y ‘.)l‘.d.ﬂ."’
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d. Top view of model showing wing nceelerometer, onetnoari a-p-
lifiers, and Field Effects Transisters (F2T0),
Figure 3, Model Photographs = (Cont'4)
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Catspan Corporation  8utt i N, vk

R

f. Bottom view of model showing static precsure orfi-~es,

1oad pan holes, and transducer mount fnr PM7,
Flgure °, Model Photographs - (Cont*<)
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ge Top view showing model mounted on sting=balance assembly and

cavity pressure transducer on forward right side of balance
housing.

Figure 3. Model Photographs - (Cont'd)
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h.

e s it

s e

Side view of Model 51«0 mounted on Calspan stine, without non-
metric RCS hardware installed.
Figure 3. Model Photographs - (Cont'd)
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Top view of Model 51-0 mounted on Calspan sting, without none
metric RCS hardware installed,
Figure 3. Model Photographs = (Cont'd)
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Je

Close=-up of aft end of Model 51-0 showing clearance between
sting and MPS nozzles. NOTE: nonemetric RCS hardware not
installed.

Figure 3. Model Photographs - (Cont'd)
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External visw of Calspan MW" Hyperconiec Thock Tunnal (HIT) show-
ing from left to right, "U" nezzle and tert ce-tior, Jchlieren
equipment, and analos computer,

Figure 3, Model Photorraphs = (Cond'4)
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1,

Left side view of pitot rake and Model 51«0 (a

hardware, installed in Calspan LB" HOT
Figure 3,

Mcdel Photographs - (Cont d)
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clote=up vlow of 1eft side of Model 51-0 ani RCE hariware,
installed i Calspan 43" HoT.

¥igure %, Model Photorraphs = (Cort ' 1)
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b
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!

Right side view of Moiel 51«0 ani RCS haridware, !fvstalled
Calspan WR" HST,
Figure 3, Mode) Photoeraphe = (Cont'd)
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0.

Right side view of pitot rake and Model 51-0 (with RCS hard-
ware removed) installed in Calspsn 48" ST,

Figure 3. Model Photographs - (Cont'd) ORIGIN
76 OF pg
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kirht side view of Model 510 with RCS hariuare installed in
Mounting btracket for Valcor valve t:=

-

Calspan WE" HOT, OH
the left of the sting,
Fipure 73,

76

Model Photographs - (Cont'd)
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/.

-

Viow of Morel S1aN with RBCU hardware in Calspan 48" HST, NOTE:
00 plenum tonk and supply hose. Valcor valve, shown mounted
an sting wms Yater moved to separate bracket,
W T, Mo el Photoprapts - (Contt'd) GRic

T AN
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» Virw looking upstream from RCH plenum tank, showing Valcor
valve on separate bracket and flex hose from valve to model
vlenum,

Fipure 7, Model Photographs = (Concluded)
78
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Test Condition b, RS off

a (O,
e S, Sonlicren Photorraphs
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1

onlierer Phstorravhe - {Cort '

Toct, Senditior L, I/H Piteh lown Jet

.
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[S

Run

p———

H'

P

’
F

a= °0
{rure

(o)

’
c

JR——

Test Condition 4, L/H Pitch Down Jet.
Sehlieren Photopraphs = (Cont'd)
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VA

d,

Run 6, a= 30°, Test Condition ©, RCS off,
Figure 5. Schlieren Photographs - (Cont'd)
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Run 7, €=30°, Test Conditon 4, R/H Pitch Up Jet
Figure 5. Schlivren Photog.-aphs - (Cont'd)
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f.

Run 8, a=30°, Test Condition ?, R/H Pitch Up Jet,
Figure 5. Schlieren Photographs - (Cont'u)
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h.

Run 10, a=30° Test Condition 1, RCS off
Figure 5. Schlieren Photographs - (Cont.'d)
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; 1. Run 11, a=30°, Test Condition 1, KCS off.
' Figure 5. Schlieren Photographs = (Cont'd)
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Run 12, a »30°, Test Condition 1, RCS off,
Figure 5. Schlieren Photographs - (Cont.'d)
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K. Run 13, @=30", Test Conii’‘on 1, L/H Pitch Down Jet
Figure 5. Schlieren Photographs - (Cont ',
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1. Run 14, a=30°, Test Condition O

©

Figure

)

. L/F Pitch Down Jet,

. Schlieren Photographz = (Cont ')
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Sirect, Impinpement Fun 102, RCO 1/H Pitch Down Jet
Fipure 5. Ochlieren Thotopraphs = (Cont.'d)
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O

Direct Impingement Run 107, RCS R/H Pitch Up Jet,
Figure 5. Ochlieren Photographs - (Concluded)
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Figure 6. Mach No. and Reynolds No. effect on right hand up-
firing jet/aero moment interaction,
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